it is possible to rigorously say that 1/0 = ∞. this is commonly occurs in complex analysis when you look at things as being defined on the Riemann sphere instead of the complex plane. thinking of things as taking place on a sphere also helps to avoid the “positive”/“negative” problem: as |x| shrinks, 1 / |x| increases, so you eventually reach the top of the sphere, which is the point at infinity.
it is possible to rigorously say that 1/0 = ∞. this is commonly occurs in complex analysis when you look at things as being defined on the Riemann sphere instead of the complex plane. thinking of things as taking place on a sphere also helps to avoid the “positive”/“negative” problem: as |x| shrinks, 1 / |x| increases, so you eventually reach the top of the sphere, which is the point at infinity.